RSP MK III

Road Surface Profilometer MK III

Road Surface Profiler MK III

The Dynatest Mk-III Road Surface Profilometer measures a number of indices and characteristics including the longitudinal profile, International Roughness Index (IRI), Ride Number (RN), transverse profile, rutting, macrotexture, and geometrics (crossfall, gradient, and radius of curvature). It can also provide data for the Boeing Bump Index (BBI) calculation. The Road Surface Profiler has a unique “Stop & Go” functionality enabling the equipment to operate in an efficient manner in urban areas, at traffic lights, stop signs, junctions, and roundabouts, making it an ideal tool for data collection on both urban and rural networks. The equipment meets the ASTM E950 Class 1, AASHTO R 57 and independently verified State road standards such as the Text-1001-s, ensuring high accuracy, repeatability under a variety of conditions that ensure the data can be used for project and network evaluation and in Pavement Management Systems.

The RSP-III is a fully upgradeable system offering up to 21 lasers. Ideal for highways and airports.

The RSP-IV is the portable version easily attached to any vehicle with the capability to attach 1 or 2 lasers. The RSP-IV is extremely versatile, easily mountable on almost any vehicle, for testing Cycle paths determining the Cycle Profile Index (CPI), on highways IRI and RN, and airports to determine the BBI.

Options for both the RSP-III and RSP-IV include texture-capable lasers, (D)GPS, and ROW cameras.

Download brochures

RSP III Brochure
RSP III Brochure US

Key benefits

  • Rapid roughness screening of all network sections

  • With the GPS option, all data can be geo-referenced allowing plotting in a GIS system

  • “Stop and Go” feature allows for testing of short sections and urban streets, making the RSP an ideal tool for project level as well as network level data collection and analysis

  • Operates at traffic speed removing the need for expensive traffic management

  • Offers real-time data collection, analysis, and storage, saving precious engineering time for post-processing of data

  • Texture lasers can collect both IRI/RN and macrotexture data simultaneously in a single run

  • Automated monitoring of laser readings ensures high quality of data

  • Highly accurate, repeatable, and reproducible data allowing data to be used in a PMS

  • Modular system, is easy to maintain, service, and upgrade

  • The RSPwin Field program gives step by step guide for the calibration of lasers, accelerometers, and DMI making calibration simple and easy to perform

  • The RSP can be upgraded to a Multi-Function Vehicle (MFV)

The Laser sensors

The Dynatest Mark III can have all from 1 to 21 lasers, always with an odd number because there is always one in the center of the beam. The Lasers are going into the DPU, and the DPU has place for up to 21 lasers.

Three laser types are used in the Dynatest Road Surface Profiler. All three lasers types are extremely rugged and reliable, and considered to be the finest laser sensors available for profiling pavements. The main laser used in the Road Surface Profiler III is an All-In-One 3D displacement sensor, but it is also possible to select up to two texture lasers, which would be placed in the wheel path. If only 1 texture laser is selected, it will be located on the inner wheel path.

It is also an option to select the angled laser, which will be placed in the top boxes on the wings with 2m long range.
If required, a line laser could also be selected, which is good for measuring very grooved pavements.
The Dynatest Mark III RSP can (optionally) be delivered with an Inertial Motion Sensor (IMS) which enables the determination of pavement Crossfall, Grade (longitudinal) and Curve Radius (horizontal).

The special Stop & Go function

The “Stop & Go” feature within the Dynatest Road Surface Profilers allows IRI and RN measurements to be taken at all traffic speeds, allowing testing at junctions, traffic lights, roundabouts and testing of short sections where it is difficult to gain enough speed, or when it is not possible to do a pre-section(tined) concrete.

This function makes it possible to drive under normal circumstances and still avoid a lot of work to cut and connect the measuring data afterwards. This saves time & money and ensures correct datasets. No need for rubber banding and no need for calculating averages.

Without this function it is impossible to test section of pavements less than 150 meter long or areas where speed has to be reduced below 15-20 km/h such as junctions and roundabouts. It has been shown that without “Stop & Go”, the road owner may not be able to collect data on up to 1/3 of the pavement network.

Measurements Parameters (Road Surface Profiler)

Longitudinal Profile, IRI and Ride Number
The longitudinal profile elevation measurements are obtained by using an accelerometer to monitor vertical vehicle body movement, and a laser sensor for measuring the displacement between the vehicle body and the pavement. Road profile elevation measurements are obtained by summing the vehicle body movement with the appropriate body-road displacement. Profile measurements in one or both wheel paths are possible. For the Mark III, if profile elevations are measured in both wheel paths simultaneously, it is also possible to measure profile elevations in the center of the lane, even if only a laser sensor is installed in that position. IRI is calculated in accordance with procedures and specifications outlined in World Bank Technical Paper Number 46 “Guidelines for Conducting and Calibrating Road Roughness Measurements”. Ride Number is calculated using methods outlined in “Measuring & Analyzing Road Profiles, National Highway Institute Short Course Manual, University of Michigan, Transportation Research Institute, October 1997”.

Rutting (Mark III only)
With a minimum of five laser sensors, a very simple lane “cross profile” and a simple, separate rut value for each wheel path can be calculated. By adding another two, four, six or more lasers (up to a total of 21), the transverse profile can be defined in greater detail, hence the rutting can be determined more accurately.

Texture
Any or both wheel path laser sensors can be of a texture-capable type employing smaller spot size and higher sampling frequency. For the Mark III the centerline laser sensor can also be texture-capable. The macrotexture statistics reported are in accordance with the established standard ‘Mean Profile Depth’ (MPD) and Root Mean Square (RMS). Both statistics are computed continuously and can be reported as close as every 100 mm (4 inches). Mean Profile Depth is measured according to ASTM E1845-01 “Standard Practice for Calculating Pavement Macrotexture Mean Profile Depth” and ISO/CD 13473-1 “Characterization of Pavement Texture Utilizing Surface Profiles”.
The profiler can also calculate the RMS (Root Mean Square) of the profile trace, which provides additional useful information regarding pavement texture (for further information, see “High-Speed Texture Measurement Of Pavements”, Kevin K. McGhee, P.E., Gerardo W. Flintsch, Ph.D., P.E., Virginia Polytechnic Institute & State University, Virginia Transportation Research Council, February 2003).

Crossfall, Grade, and Radius of Curvature (Mark III only)
By adding an Inertial Motion Sensor (IMS), collection of crossfall, grade, and highway curvature information is possible. The IMS is a microprocessor controlled, self-compensating, three-axis solid-state gyro unit. Crossfall is computed as the slope of a linear regression line through the laser elevation measurements, adjusted for roll information obtained by the gyro. Crossfall is displayed and stored in degrees.
Grade is the longitudinal slope of the lane under test. It is displayed and stored in degrees.
Radius of Curve (km or mile) and Curvature (deg/km or deg/mile) of the lane is determined in the horizontal plane. Turn rate (degrees per second) and the vehicle velocity are the basis for these computations.

Laser Elevations and Accelerations
Raw laser elevation data (height of each laser above the pavement surface) and raw vertical acceleration can be stored at user-specified intervals. Elevations determine the Cross-Profile and are useful for verifying rut measurements or providing data from which to calculate rut depths using alternative procedures.

Faulting
Faulting on jointed concrete pavements can be detected according to “Standard Practice for Estimating Faulting of Concrete Pavements AASHTO Designation: PP39-99”. The RSP field program provides ample flexibility for the user to specify and/or modify the definition of a fault.

Do you need more information?

Fill in this form and you will get contacted by one of our specialists.

Equipment

Dynatest provides clients around the world with high-quality equipment for pavement evaluation.

More equipment